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Native-state dynamics of the ubiquitin
family: implications for function

and evolution

Neelan J. Marianayagam† and Sophie E. Jackson
Centre for Protein Engineering, Department of Chemistry, University of Cambridge,
Cambridge CB2 1EW, UK
Protein dynamics are integral to protein function. In recent years, the use of computer
simulation to understand the molecular motions of proteins has become widespread.
However, there are few such studies which compare the dynamics of proteins that are
structurally and functionally related. In this study, we present native-state molecular
dynamic simulations of four proteins which possess a ubiquitin-like fold. Three of these
proteins are thought to have evolved from a common ancestral ubiquitin-like protein and
have similarities in their function. A fourth protein, which is structurally homologous but
which appears to have a different function, is also studied. Local fluctuations in the native
state simulations are analysed, and conserved motions of the C-a backbone atoms are
identified in residues which are important for function. In addition, the global dynamics of
the proteins are analysed using the essential-dynamics method. This analysis reveals a
slightly higher degree of conservation in dynamics for the three proteins which are
functionally related. Both the global and local analyses illustrate how nature has optimized
and conserved protein motions for specific biological activity within the ubiquitin family.
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1. INTRODUCTION

The dynamic properties of proteins are now well
known to play important roles in protein function.
Many different aspects of protein function can be
affected by protein dynamics. For example, protein–
protein recognition (Gohlke et al. 2004), protein–DNA
interactions (Kalodimos et al. 2004) and enzyme–
substrate binding and enzyme activity (Rasmussen
et al. 1992; Vitagliano et al. 2002; Cui et al. 2004) are
all determined, in part, by the conformational
flexibility of the protein backbone as well as specific
side chains. It is, therefore, important to characterize
not only the structure of a protein but also its
dynamic properties as well. While X-ray crystal-
lography provides an excellent method for the
determination of high-resolution structures, it gener-
ates a static picture of a protein and, in general,
provides little information on protein dynamics.
Experimentally, a number of different nuclear mag-
netic resonance (NMR) techniques have been used to
obtain information on the molecular motions within
proteins on several different time-scales. The number
of proteins on which such studies can be performed,
however, is limited. The use of computer simulations
to probe protein motions, using existing structural
information, is, therefore, proving extremely fruitful.
However, in order to extract useful information about
orrespondence (neelanm@yahoo.com).
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the dynamics observed during the course of these
simulations, mathematical models must be employed.
Two of these models are normal mode analysis (NMA;
Brooks et al. 1995) and essential dynamics (Amadei
et al. 1993).

In NMA, the motion of the protein is assumed to be
harmonic. The technique looks mainly at vibrational
motion while ignoring all other types of motion. In
NMA, the potential energy function is approximated as
a sum of quadratic terms, which describe atomic
displacement (Brooks et al. 1995). The coefficients of
these terms represent force constants, which can be put
into a matrix. If one adds the atomic masses to this
matrix, one can set up a matrix equation to calculate
the vibrational modes of the molecule. This then
becomes an eigenvalue problem. For a system with
N atoms, there are 3NK6 eigenvalues and eigenvectors,
which specify the normal modes of the system. The
advantage of NMA is that it gives us insight into
macromolecular motion without the need of a mol-
ecular-dynamics (MD) trajectory. This makes it less
computationally intensive than looking at native state
dynamics using MD simulations.

The method of essential dynamics looks at the
positional fluctuations of atoms rather than motion
confined to a harmonic potential (Amadei et al. 1993).
It is used in conjunction with MD simulations. This
method divides the conformational space of a protein
into two subspaces, an essential subspace and a
physically constrained subspace (Amadei et al. 1993).
q 2005 The Royal Society

http://rsif.royalsocietypublishing.org/


highest eigenvalue is considered the second principal
component and so on. The eigenvectors represent the
direction of motion, and the eigenvalues represent
the amount of motion along the eigenvectors. The
dynamics of a protein can thus be analysed by
projecting its atomic motion during a MD simulation
onto its first two to three principal components
(Amadei et al. 1999a). Essential dynamics is a powerful
tool for monitoring protein dynamics in phase space
since the observed motion is unconstrained and
represents the atomic fluctuations of the protein.
Essential dynamics has been used to look at the
native-state fluctuations of proteins (Ceruso et al.
1999; Merlino et al. 2003; Merlino et al. 2004) as well
as thermal denaturation trajectories (Roccatano et al.
2003). It has also proven useful in the identification of
protein folding transition state ensembles (Maria-
nayagam & Jackson 2004).

In this paper, the native-state dynamics of four
proteins with a ubiquitin-like fold are analysed using
all-atom molecular dynamic simulations. The struc-
tures of the four proteins—ubiquitin (Vijay-Kumar
et al. 1987), UBX (Buchberger et al. 2001), ThiS (Wang
et al. 2001) and MoaD (Rudolph et al. 2001)—are all
shown in figure 1. They all adopt the ubiquitin-like
b-grasp fold, in which a highly curved mixed b-sheet
packs against an a-helix to form the hydrophobic core
of the protein. The four proteins come from different
organisms—ubiquitin and UBX are mammalian pro-
teins, whereas MoaD and ThiS are bacterial proteins.
Despite the fact that they have relatively little sequence
homology, it has been proposed that ubiquitin, ThiS
and MoaD are evolutionarily related, having evolved
from a common ubiquitin-like ancestor (Rudolph et al.
2001; Wang et al. 2001).

Ubiquitin is involved in tagging proteins for
degradation by the proteasome by forming a covalent
link through its C-terminus with the target protein.
The two C-terminal glycine residues are essential for
this function and for the activation of ubiquitin by
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The essential subspace is described by the anharmonic
motion of the positional fluctuations of the atoms.
The motion in the remaining subspace is defined by a
narrow Gaussian distribution.

The essential-dynamics method represents a princi-
pal-component analysis of the atomic fluctuations of
the protein. The first step is the generation of non-mass
weighted coordinate matrix. For an N-atom system,
this will have 3N columns and at least 3NC1 rows. This
matrix, which we will call A, represents the movement
of atomic positions from an average value throughout
the course of the simulation. The covariance matrix of
A, which we will call C, is defined by the following
equation:

CZATA; (1.1)

where T is the transpose of the matrix. The transpose is
found by exchanging the rows and columns of a matrix.
The eigenvectors of the covariance matrix are the
principal components. This then turns into an eigen-
value problem:

CxZ lx; (1.2)

where l is the eigenvalue associated with the eigen-
vector x. For an N-atom system, there are 3N
eigenvectors and associated eigenvalues. Equation
(1.2) can be simplified to the following:

ðCKlIÞxZ 0; (1.3)

where I is the identity matrix. The solution to equation
(1.3) can be obtained by diagonalizing the covariance
matrix. The diagonal matrix, D, of the covariance
matrix is defined by the following:

DZUK1CU: (1.4)

The matrix U contains the eigenvectors, and D is a
matrix of the corresponding eigenvalues. The eigen-
vector with the highest eigenvalue is considered the first
principal component, the eigenvector with the second
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